Using a definition of Euler characteristic for fractionally-graded complexes based on roots of unity, we show that the Euler characteristics of Dowlin’s “sl(n)-like” Heegaard Floer knot invariants HFK_n recover both Alexander polynomial evaluations and sl(n) polynomial evaluations at certain roots of unity for links in S^3. We show that the equality of these evaluations can be viewed as the decategorified content of the conjectured spectral sequences relating sl(n) homology and HFK_n. This is joint work with Professor Andy Manion.
Loading...