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Abstract: Fractional Gaussian Fields (FGF’s) are a family of stochastic processes that
can be defined on any compact manifold M and model the behavior of random
oscillations on M. Studying the extreme values of these fields is of great interest to a
variety of subjects, and yet computing the distributions of the maxima and minima of
the FGF are challenging, open problems. We define discrete fractional gaussian fields
on manifolds M that converge to the continuous fractional field, and by numerically
simulating the discrete fractional gaussian fields, we generate conjectures for the
behavior of the extreme values of the continuous field.

Background Information:
For a sequence of real valued random variables, we have the following characterization

Theorem
A sequence {Xn} of real valued random variables converges to a real valued random
variable X if and only if for all bounded, continous f : R → R,

E[f (Xn)] → E[f (X )]



The Laplacian and the Fractional Gaussian Field

The Laplace-Beltrami operator on a compact manifold M is a self adjoint linear
operator

∆M : C∞(M) → C∞(M)

that extends uniquely to a continuous operator on L2(M).
∆M has a discrete spectrum:
Eigenfunctions {ϕm}∞m=1 of ∆ form an orthonormal basis for L2(M,B(M), µ):

f (x) =
∞∑
m=1

ϕm(x)⟨f , ϕm⟩L2(M), ⟨ϕm, ϕn⟩ =
{
1 if m = n

0 if m ̸= n

with eigenvalues
0 = λ0 > λ1 ≥ λ2 ≥ λ3 ≥ . . . → ∞

The Fractional Gaussian Field with parameter s > d/4 is a function

Xs(x) :=
∞∑
m=1

ϕm(x)Zm

λs
m

where Zm ∼ N (0, 1) are I.I.D. standard normal random variables.



Convergence of the discrete Fractional Gaussian Field

Let Xs be the fractional Gaussian field on the d dimensional torus Td . For a grid
approximation of T d , let ∆n be the graph Laplacian. Then the discrete fractional
Gaussian Field is defined analogously as

X s
n (x) :=

n∑
m=1

ϕ⃗m(x−)Zm

λs
m

.

Theorem
For all θ⃗1, . . . , θ⃗k ∈ Td and s > d

4
, ⟨X n

s (θ⃗1), . . . ,X
n
s (θ⃗k )⟩

dist.−−−→ ⟨Xs(θ⃗1), . . . ,Xs(θ⃗k )⟩.
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Convergence of the DFGF in the sense of Stochastic Processes

Definition
A sequence of random variable {Xn} valued in C (S1,R) converges to another random
variable X in distribution (also valued in C (S1,R)) if and only if for each bounded and
continuous function f : C (S1,R) → R

E[f (Xn)] → E[f (X )]

Theorem (Main Result)

Considering {X n
s } and Xs as random variables valued in C (S1,R), X n

s
dist.−−−→ Xs .

▶ maxt∈S1 X n
s

dist.−−−→ maxt∈S1 Xs

▶ Emaxt∈S1 X n
s → Emaxt∈S1 Xs

Proof.
The map max : C (S1,R) → R given by f 7→ maxt∈S1 f (t) is continuous since if {fn}
and f are continous functions on the circle and fn → f uniformly, then
maxt∈S1 fn(t) → maxt∈S1 f (t).
(1) follows by the Continuous mapping theorem: if {Xn} and X are random variables

valued in a metric space (S, ρ), Xn
dist.−−−→ X and φ : S → R is continous then

φ(Xn)
dist.−−−→ φ(X ).

(2) follows by the definition of convergence in distribution.


