
PATHS OF THE FRACTIONAL GAUSSIAN FIELD ON THE CIRCLE AND TORUS

Andrew Gannon
University of Connecticut, 2022 NSF REU in Mathematics

PATHS OF THE FRACTIONAL GAUSSIAN FIELD ON THE CIRCLE AND TORUS

Andrew Gannon
University of Connecticut, 2022 NSF REU in Mathematics

Fractional Gaussian Fields (FGF)s

Let (M, g) be a compact Riemannian manifold, and let µ be the uniform mea-
sure on M. If −∆M denotes the Laplace-Beltrami operator on M, then there
exist eigenfunctions {ϕi}∞i=0 of −∆M , with corresponding nonnegative eigenval-
ues {λi}∞i=0, which form an orthonormal basis for the separable Hilbert space
L2(M,B(M), µ). We may assume 0 = λ0 < λ1 ≤ λ2 ≤ · · · .
Let S(M) denote the Schwartz class of smooth, compactly supported real-valued
functions on M whose Fourier coefficients decrease more rapidly than any poly-
nomial, with its dual space S ′(M). For any s ≥ 0, we define the fractional Lapla-
cian acting on functions f ∈ S(K) by

(−∆M )−sf (x) :=

∞∑
i=1

1

λsi
ϕi(x)

∫
M

ϕi(y)f (y)dµ(y).

Let {Wi}∞i=1 be an i.i.d sequence of standard normal Gaussian random variables
on a probability space (Ω,F ,P). Then

W (f ) :=

∞∑
i=1

∫
M

ϕi(y)f (y)dµ(y)Wi, f ∈ S(M)

defines a white noise process on L2(M,B(M), µ). We define the Fractional
Gaussian Field (FGF) with parameter s ≥ 0 on M acting on functions f ∈ S(M)
by Xs(f ) = (−∆M )−sW = W ((−∆M )−sf ). Using self-adjointness of the opera-
tor (−∆M )−s, we compute

Xs(f ) = W ((−∆M )−sf ) =

∞∑
i=1

⟨(−∆M )−sf, ϕi⟩L2(M,µ)Wi

=

∞∑
i=1

⟨f, (−∆M )−sϕi⟩L2(M,µ)Wi =

∞∑
i=1

⟨f, ϕi⟩L2(M,µ)

λsi
Wi

Defining the FGF Pointwise

Thus far, the FGF has been defined as a random distribution. However, there
are special cases in which one can define the FGF pointwise. Namely, when the
parameter s is greater than dimM/4. Fix a point p ∈ M, and let δp denote the
Dirac measure on M concentrated at p. If f ∈ S(M), integration with respect to
this measure gives ∫

M
fdδp = f (p).

Heuristically, we make the pointwise definition

Xs(p) = Xs(δp)

=

∞∑
i=1

⟨δp, ϕi⟩L2(M,µ)

λsi
Wi

=

∞∑
i=1

ϕi(p)

λsi
Wi,

and this series converges almost surely when s > (dimM)/4. The goal of this
poster presentation is to study of the path properties of the FGF in the case that
it is defined pointwise.

Paths of the FGF

Each point ω in our probability space Ω determines a function

M → R : p 7→ Xs(p)(ω).

A function of this form is called a path of the process Xs. Of course, these paths are defined
only when s > (dimM)/4. Numerical evidence suggests that the parameter s controls not
only when the FGF may be defined pointwise, but also the regularity of the sample paths.
More specifically, greater values of the parameter s imply greater regularity of almost every
sample path of Xs. For instance, the figure below shows a path of Xs on the circle S1 for
three different values of the parameter s. Note that dimS1 = 1, so in this case the critical
value of the parameter is 1/4.

Fig. 1: A path of the FGF on the circle for the s-parameter values 0.275, 0.5, and 1.

As we see, the sample path depicted for the parameter value 0.275 is highly irregular. For
the parameter value of 0.5, the sample path becomes a bit more regular, but when the
parameter is as large as 1 the sample path actually appears to be smooth. This suggests
the fundamental question in our investigation: what are sufficient sizes of the parameter s
that will guarantee a particular degree of regularity in almost every sample path of Xs?

Results for the Circle

The following are a collection of results we obtained regarding the regularity of paths of the
FGF on the circle.

Theorem. Let s > 1/4. Then there exist positive constants α, β, and γ such that

E [|Xs(θ)−Xs(ϕ)|α] ≤ β |θ − ϕ|1+γ

for all θ, ϕ ∈ S1.

By Kolmogorov’s Continuity Theorem, this result implies that there exists a modification
{X̃s(θ)}θ∈S1 of Xs whose paths are almost surely locally η-Hölder continuous for all η ∈
(0, β/α).

Theorem. Let α ≥ 1 and suppose s > 1
2 +

1
2α. Then the paths of Xs are almost surely α-

Hölder continuous functions. That is, for almost every ω ∈ Ω, there exists a constant Cω ≥ 0
such that

|Xs(θ)(ω)−Xs(ϕ)(ω)| ≤ Cω |θ − ϕ|α

for all θ, ϕ ∈ S1.

A particular case of the theorem above is that when s > 1, the paths of Xs on the circle are
almost surely Lipschitz functions; i.e. they are Hölder continuous with exponent 1.

Theorem. Let k ∈ N, and suppose s > k+1
2 . Then for almost every ω ∈ Ω, the path Xs(·)(ω)

is k times differentiable, with derivative given by

∞∑
n=1

(
dk

dθk
(cos(nθ))

Zn(ω)

n2s
+

dk

dθk
(sin(nθ))

Yn(ω)

n2s

)
.

Here, {Zn} and {Yn} are sequences of IID standard Gaussian random variables. This is to
say that the series defining the FGF may be differentiated term-by-term.

A Result for the Torus

Many of the results obtained for the FGF on the circle generalize with appropriate
modifications to the d-dimensional torus Td := S1 × · · · × S1︸ ︷︷ ︸

d-times
. For instance, we

have the following theorem:

Theorem. If Xs denotes the FGF on Td and s > d+1
2 , then the sample paths of

Xs are almost surely differentiable.

In our simulations, we visualize the FGF on the torus T2 using a heat map.

Fig. 2: A heat map depicting a path of the FGF on T2.

Further Directions

• Regularity of paths of the FGF on the sphere S2.

• Paths of the FGF on arbitrary compact manifolds.

• Sobolev regularity of paths when s ≤ (dimM)/4.
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