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Viscous Relativistic Fluids
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Abstract
The abstract serves both as a general introduction to the topic and
as a brief, non-technical summary of the main results and their
implications. Authors are advised to check the author instructions
for the journal they are submitting to for word limits and if struc-
tural elements like subheadings, citations, or equations are permitted.
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1 Conventions

Throughout we have the standard conventions, the dimension of the spacetime
is 4, Greek indices run from 0 to 3, Latin indices run from 1 to 3 and we
employ the Einstein summation convention with repeated indices on tensors.
Dots above a symbol refer to time derivatives and the pressure and density of
a fluid are given by p and p respectively. Furthermore, we assume that we are
working in a co-moving frame such that the four-velocity of the fluid is given by
u® = 1,u* = 0 and that it’s scalar product . It is also worth noting that having
a diagonal metric ensures that the stress-energy tensor, Ricci curvature tensors
and Einstein tensor are also diagonal. Working in units where 87G = ¢ = 1.
Finally, dot refers to a time derivative.

We consider models introducing a dynamic velocity from the onset, if u®
is the four-velocity of a fluid then C* = Fu® is the dynamic velocity where
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2 Viscous Relativistic Fluids
F' is the index of a fluid. This is some function of the pressure and density

introduced to solve the superliminal signal problem when considering only the
four-velocity.

2 FLRW and Bulk Viscosity

2.1 Metric Tensor and non-zero Christoffel symbols

Homogeneous and isotropic FLRW metric for (k=0) flat spacetime
ds® = —dt* + a*(t)(da® + dy? + dz?). (1)

Define the Hubble parameter as

H

I
SIS
—~
[\
~

Given the metric, the non-zero Christoffel symbols are

[0, =T%, =T%; = aa, (3)
. a
[lg =T% =% = P H. (4)
Note that
Vaou® = 0u® + Faaﬁuﬁ
= Faaﬁuﬁ
= FaaOuO
= FaaO
40
a
= 3H, (5)
and that

VoC = Vo (Fu®)
=u*VF + FV,u®
=u'VoF + F(3H)
=F +3FH. (6)

2.2 Ricci Tensor and Scalar Curvature

The components of the Ricci tensor are

Roo = 0al"g — 01", + I‘aaﬁrﬁoo - Faoﬁrﬁao»
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=9I — Faogrﬁaw

a(2)(2)

Ryy = 0,1% — I, + Faaﬁrﬁu - Falﬁrﬁah
= 0ol + T, — (Fowrﬁm + Fll,@F’Bn) )

=i+ (57) = (1 (5) (3 ),

=a® + ai + 3a® — 24

= ad + 2a°.

2

)

By a very similar process, we have that

Ryy = Ry = ai + 24%,

therefore, the Ricci scalar is

I LN 2 .
e (5 (0)) oo

2.3 Stress-energy Tensor

The stress-energy tensor for describing bulk viscosity is given by

T;w = (p + p)uuuu + Dgur — C(g;w + uuuy)vaca,

where ( is the bulk viscosity coefficient.
Thus, the non-zero components are

and the trace is

Too = p,

T =Too = Ts3 = a*(p — (Vo C?),

T =g"'T,,

—p+3(p—¢VaC%)

(10)

(1)
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2.4 Friedmann Equations and Density Evolution
Equation

The constraint equation (or second Friedmann equation) is obtained by looking
at the (00)-Einstein Equation.

1
Goo = Roo — igooR = Tho
.1 /a
— —3“+6(G+H2) =
a 2 a
<~ p=3H> (15)

And the first Friedmann equation can be obtained by taking any of the
identical (i7)-Einstein Equations, but it is first useful to know that

— —-=H+H? (16)
a
So, using the above for p and the identity for H.

1
Gi1 = Ri1 — ignR =T <~

1
aii + 2a% — ~a? < <“+H2>> — (Vo)
2 a
= —2ai+ 24> —a’p = —((F +3FH))
2
—2a+2(a) —p=p—CF—3CFH
a a
—2(H+H*) +2H? —p=p—CF —3CFH
—2H=p+p—CF—3CFH

1111

. 1 1 1 . 3
H=——p—-p+-CF+ =CFH 1
5P~ P+ 5CE+ ¢ (17)
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For the density evolution equation, we look at the conservation law defined
from the stress-energy tensor

0=V,T"
= 0,T" +T",, 1% — 17, T
_ 80T00 + FuOILTOO _ (FlouTﬂl + F2OMTM2 + FBOHTug)
= o(—p) +3H(=p) = 3H(p — (VoC?)
= —p—3Hp—3Hp+ 3H((F + 3FH)
<« p=-3Hp—3Hp+3CFH + 9CFH? (18)
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3 Bianchi I and Shear Viscosity

3.1 Metric and non-zero Christoffel symbols

Homogeneous and anisotropic Bianchi I metric for spacetime
ds® = —dt* + A3 (t)dx® + A3(t)dy* + A5(t)d2>. (19)

Given the metric, the non-zero Christoffel symbols are (for i = 1,2,3
ignoring the Einstein summation convention here for convenience)

Y%, = A A, (20)
A
FZlO = I (21)

a0
-
=, 1
i=1
= 3H, (23)
and that
VaoC® = F 4+ 3FH. (24)

3.2 Ricci Tensor and Scalar Curvature

The components of the Ricci tensor are
Ryy = 000 — 010 + Faaﬁrﬁoo - Faogrﬁam

= _aOFa0a - FaOﬁFBam
—0o(3H) — (Famrlao + %000 + 1% 00)

(G856

=1
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:_Zi% (25)

R;; = 0,1%; — 0, + Faaﬁrﬁii - Fawrﬁm‘a

= 0T + 1,0 T%; — (Faiorom + T D+ T2, + Fai3r3ai)

= 0o(A;iA) + (3H)(AA;) — (Fiioroii + T D + T, + FaiSF?)ai)
= A A+ Az‘z +3HA; A; — (A,»Q + 0T + T2, + Fai?)rgaz’)

= A A; + 3HA; A — (T T +T2,T2, + 19,12 ) (26)

Therefore, the remaining components are

Ry = AvA; +3HA A — (DT o + T %0 + T5T%)

= A Ay + (2 + j—z + jj) ArAy — Ay
= A <Al + 4, (ii + ﬁj)) (27)
Similarly,
Ryy = Ay (A'2 + Ay (ii + ﬁ;)) (28)
Ry3 = As <As + A; (ji + ﬁi)) (29)

Finally, the Ricci scalar is given by

. S
A Avds Ay | Avdg

_ b —9 il

=" <§A A1 4, A2A3+A1A3> (30)
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3.3 Stress-energy Tensor

The stress-energy tensor for describing shear viscosity is given by

2
T = (p+ p)upty + P9 — (C — 319) T VO — 197TﬁM7T'YV (VsCy +V,Cp),

(31)
where ( is the bulk viscosity coefficient, ¥ is the shear viscosity coefficient and
Tuy = Juv + Uy, is the projection.

It is useful to know that

w%, = g™, = 0%, + uu, (32)

so that in the case of v = i = 1,2,3, the projection with an index raised
simplifies to the Kronecker delta as the spatial components of the four-velocity
are zero (u; = 0).

Moreover, we require

VoGl = 0.Cy —T7,,,Cs
= 0a(Fu,) — I, ugF
= u,0,F +1°,,F (33)

Thus, the non-zero components are

2
Too = (p+ p)uouo + pgoo — (C - 319> (900 + uoug) Vo C* — 197rﬂ07r"’0(VBC7 +V,Cp),

=pr- 19550670 (VsCy +V,Cp),
=p—9(VoCo + VoCo),
= p. (34)

And fori=1,2,3
2
Ty = (p + p)uivi + pgii — (C - 319> (gii + uiug) Vo, O — ﬂﬂﬁﬂ’yi(vﬂcv +V,Cp),

2
= pAZ2 — << — 319) A?VQCO‘ - 195’81'(571(V507 +V,Cs),
= A?p —9(V,C; + V,Cy),
= A?p) — 20(u;0; F +T°, F),
= A%p' — 20F A; A, (35)
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2
where we have p’ = p — <C — 519 VoC? as the effective pressure. Raising
an index yields (again ignoring the summation convention for convenience)
. A,
T, =p — 219FX’. (36)
i
The trace is then given by

3 .
A;
_ v _ / 1 /
T=g"T, =—p+3p —20F ;,1 1= —p+3p —69FH. (37)

3.4 Friedmann Equations and Density Evolution
Equation

The constraint equation (or second Friedmann equation) is obtained by looking
at the (00)-Einstein Equation.

1
Goo = Roo — 59003 = Tho
A A 1A A2A3 Ay A
—_— 2 p—
= Z T <Z A, T A A, T AA, T A1A3> P

B A1A2 AsAs | AyAs
T A A, T A, T A, (38)

And the first Friedmann equation can be obtained by taking the remaining
(7i)-Einstein Equations and summing them. However, it is first useful to know
that

v =p-(¢-30) ace,
(=2 (F+3FH)
3 b
. 9 .
= p—CF —3FCH + S0F + 20F H. (39)

As well as the following using 38

A
AN - o o
B 1 A; A1 A, Ay A3 A1 A3
=52 <Ai> 2 (AlAz T ad, T A1A3>
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3 2
— Z (ﬁ) = 9H? - 2p (40)

3
= » L =3H+9H*-2p. (41)

So, we have

1
G = Ri1 — 59113 =T —

. . (A, A 1, [~ A AjAy  ArAs A As
Ay <A1+A1 <AQ+Ag>> 25141 (;&+A1A2+A2AS+A1A3
= A%y —29F A A
Ay Ay AyA, A,
Az 22, a8 =A% | p —20F—
<— 1<A2+A3+A2A3> 1<p 19A>
Ay Ay AyA, ,
=4 = =— 20F —. 42
(:)A2+A3+A2A3 p+19A1 (42)

Repeating with the (22) and (33) equations yields

Ay Ay A4y Ag
A71+A73+A1A3 = —p +219FA72 (43)
Ay Ay, A4, , As
AL Ay — o ogpAs 14
A, A, T A, PR (44)
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respectively.
Summing and using 38, 39 and 40, we get

22( >+p3(p CF—3FCH + 19F+219FH)+219FZA

— 2BH+9H?—2p)+p=-3 (p — (F —3FCH + gﬁF + 219FH) + 20F(3H)

< 6H = —18H?>+3p — 3p + 3CE + 9FCH — 20F

. 1 1 1. . 3 1 .
<« H=-3H>+-p—-p+ —(F+ =FCH — ~9F. 45
SH™ + 5p— 5p+ 5CF + S F(¢ 3 (45)

For the density evolution equation, we again look at the conservation law
defined from the stress-energy tensor and use 39

0=V,T"
=0,T", +T",, 1% — 17, 1"
= 0oTY + F“OMTOO — (DY, TH + 12,1 +1°,T")
= 0o(—p) +3H(—p)

Ay Ay Ag Ao As [, As

S A2 ogp As [ _ogpts

A1< ﬂA1>+A2< ﬁAg)JrAg( i
2

=—p—3Hp— pz +219FZ< )

< p=—-3Hp— 3Hp +20F(9H? — 2p)

. 2 .
= p=—3Hp—3H(p—(F—3FCH + Z9F + 20FH) + 189FH? — 49Fp
<> p=-3Hp—3Hp+3(FH+9(FH? — 20F — 69FH* + 189FH? — 49Fp

— p=—3Hp—3Hp+3CFH + 9(FH? — 20F + 120FH? — 49Fp
(46)

3.5 Scale Factors
Now, if we let ¢ = 20F and take 42 minus 43, we get

Ay Ay Ay (A A (A A
A, A, A \A, A )T P\ A A

< AQAl — AlAQ = — 3 AgAl — AlAg) — (p(AQAl — AlAg)

Ig(
Ay Ay — A1Ay A

A2A1 — A]_ A2 A3
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d. . Ay
= %[ln (AgA; — A1 AY)] = _fz —
d i { Al A2 _ Al A2 A3 .
d . . d )
= a[ln (A2A1 — AlAQ)] — %[ln AlAQ] = —a[ln A1A2A3] — (p (47)

Integrating yields

| As Ay — Ay Ay
1 A A,
Ay A 0 L
A A T AAAC (48)

) =—1In (A1A2A3) — Y + 012

where Cf, = e“12, O}, € R.
Similarly, by considering 44 minus 43, one arrives at
Ay A _ O

— -
A Ay AAnds (49)

Adding 48 and 49 gives

2& B (Al A3> _ C{2+Cé3eftp

Ay Ay * Az A1ArAs
AQ 0{2 +C§3 _
L2 g 12T V3 o

<= SA2 3 A, A, A e
A S

=H

22 _ P2 -
1 + A1A2A3e . (50)

1
where Sy = g(C{Q + Cl3). Of course, by beginning with 42 and 44 or 43 and

44, one would arrive at similar results, giving

As . S3 —p
Ais = H -+ A1A72A36 (51)
Ay Sy

21 _ Pt e
1 H + A1A2A36 (52)

with S; and S35 defined like Ss.
3
Notice that >~ S; = 0 is necessary by taking the sum of the above linear,
i=1
first-order ODEs for the scale factors.
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