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Variable Definition

k Number of iterations 

A Usually a tall matrix

b Multiplication of A and xTrue, with added noise 

xTrue The correct  estimated value

Noise Source of chatter 

t
k

Time step

x
0

Initial guess for x
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Abstract & Background
Linearized Bregman (LB) Iterative Shrinkage Thresholding Algorithm 

(ISTA)

Iterative Formula

Time Step

Shrinkage Process

Sparse recovery optimization algorithms are 
utilized in machine learning, imaging, and parameter 
fitting in problems, as well as a multitude of other fields. 
Compressive sensing, a prominent field in mathematics 
this past decade, has motivated the revival of sparse 
recovery algorithms with ℓ-1 norm minimization. 
Although small underdetermined problems are 
substantially well understood, large, inconsistent, nearly 
sparse systems have not been investigated with as much 
detail. 

In this dynamical study, two commonly used 
sparse recovery optimization algorithms, Linearized 
Bregman and Iterative Shrinkage Thresholding 
Algorithm are compared.  The dependence of their 
dynamical behaviors on the threshold hyper-parameter 
and different entry sizes in the solution suggests 
complementary advantages and disadvantages.  These 
results prompted the creation of a hybrid method which 
benefits from favorable characteristics from both 
optimization algorithms such as less chatter and quick 
convergence. The Hybrid method is proposed, analyzed, 
and evaluated as outperforming and superior to both 
linearized Bregman and Iterative Shrinkage 
Thresholding Algorithm, principally due to the Hybrid's 
versatility when processing diverse entry sizes.
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LB (Left): Though converging slightly 
quicker early on when λ is small, it would 
lead to overfitting/ fluctuation later on. 
Overall, a moderate or comparatively 
large λ is most suitable for LB, a 
reasonable range could be from 0.5 - 1. 

ISTA (Right): Obviously, if we put a large λ 
in ISTA, the residual would decrease to a 
very limited extent. (Basically predicting 
most entries as zero). ISTA needs a very 
small λ to reach a low residual. A good 
value for λISTA is around 0.01.
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Small Entries

LB ISTA

 With small entries and small λ, ISTA tends to predict well and converge 
quickly without fluctuation in later iterations. 

Large Entries

LB ISTA

For large entries in LB, The difference between different  λ is very small early on in the iterations and overall 

convergence rate is quick, while comparatively larger  λ could result in smaller chatter later on. 



The Hybrid Method 

The Hybrid is a combination of both LB and ISTA algorithms. The Hybrid takes the advantages of quick 
convergence as well as less chatter by its ability to function well with both large and small entries. The 
general idea of the hybrid is as follows:  x 

hybrid 
 follows x

lb 
 for the first K iterations, then smaller entries follow 

ISTA and larger entries follow LB, where x is a specific entry. 

Iteration KIteration = 0 Max Iteration

Linearized 
Bregman (LB)

Linearized Bregman (LB) or ISTA 
(follow ISTA only if  |x 

hybrid
|< x

mid 
 else follow LB)

LB

ISTA

Hybrid 

In the figure (above), a base case scenario with the 
Hybrid method was run in which it was observed that the 
Hybrid method outperforms both LB and ISTA. Here the 
parameters were set as followed: λLB = 1, λISTA = 0.01, K 
= 5, K

max
= 20, and x

mid  
= 1.0

 
. This observation prompted us 

to continue learning about the Hybrid method
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In the figure (left), all three algorithms underwent 
subsampling. In this study, subsampling is performed by 
choosing k rows out of the entire matrix A and vector b for 
each iteration which replaces the large matrix A and 
vector b with a subsampled Ak and bk. Analytically, we 
predicted that LB will converge quicker than ISTA since 
ISTA leaves out information when undergoing the 
Shrinkage process because it uses xk.  The figures on the 
left support the prediction that LB converges quicker than 
ISTA when subsampled and the graphs also show that 
the Hybrid is able to outperform both LB and ISTA. 



Comparing Entries & Submatrix Shapes

Small Entries Large Entries 
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In figures (above), varying entry sizes were tested using an x-xTrue test and the Model Error 
test. The x-xTrue test follows a single entry size throughout the entire algorithm while in the 
Model Error test, all entries are set to be the desired size(zero,small, or large) and the behavior 
of all entries are tracked. Just as predicted earlier, the Hybrid suffers less chatter(an advantage 
from ISTA) and has a better approximation rate(an advantage from LB). For the zero entries, 
there is no observed significant difference with the x-xTrue test and the Model Error test is 
undefined since the denominator is zero. For small entries(entries less than one) we do observe 
a difference between the algorithms and we observe the Hybrid and ISTA working better than 
LB. Finally for the large entry column (entries greater than 1), we observe the Hybrid to be 
directly on top of the LB.

ISTA

LB

In figures (above), three subsampled matrix Ak shapes were tested (flat, 
tall, and square). For ISTA (top) a flat submatrix was observed to lead to 
overfitting in later iterations. The best submatrix for ISTA is Tall 
Subsampling with the least average residual. Conversely, for LB the best 
subsampling is flat subsampling since flat has the least residual. The 
y-axis is made to be log(Residual) to make the result more observable. 


