
Identifying Winning Strategies 

for the Game of Cycles 
Using Computer Programs and Game Trees

Iona College

Nicholas Bozentko

Abstract: The Game of Cycles (Su, 2020) is an impartial combinatorial game played on a connected planar graph. Each player takes turns marking 
an edge of an initially undirected graph with a direction subject to certain rules, with the goal of completing a cycle cell. Our research involves 
finding winning strategies for different classes of game boards. We begin by identifying either first or second player winning strategies for 
relatively simple boards. To study more complex boards, we implement a playable version of the game that can be run on a computer. We then 
use this to create a program that evaluates every possible game state of a given board and finally determines which player has a winning strategy. 
Currently, we have our playable computer game and can generate game trees for smaller boards. Going forward, we plan to implement more 
boards in our playable game and optimize our program to efficiently identify winning strategies in larger boards.

Background: The goal of the Game of Cycles is to complete a cycle cell on 
a connected planar graph board. Two players take turns marking edges with the goal of 
either completing a cycle cell or marking the last markable edge. A move is not allowed 
to result in a sink or source node in the graph. The goal of our research is to identify 
winning strategies for different classes of boards. To assist in this goal, we have created 
a computer playable version of the game and are writing programs to evaluate every 
possible state of a game board.



Designing Our Application

Major Design Considerations

The challenge in designing the application was deciding 
how to accurately represent the game board, game state, 
and determine if a player has won the game.

A naïve approach to representing the game board would be 
to use a simple graph implemented with adjacency list. 
With this approach, existing and well-known graph 
algorithms could be used to derive the game 
state. There are several problems with this approach.

The first issue that comes up with this approach is our 
unique idea of a “cell.” Each game board consists of cells 
that, when formed into a cycle, would result in the end of 
the game. In regular graph theory, this idea of a “cell” does 
not exist. Simply moving around the nodes / edges in a 
graph does not change the graph. However, moving the 
nodes / edges in a game board does change the game 
board. For this reason, creating and maintaining the game 
board is slightly more complex than simply constructing a 
graph.

The next issue that arises with this approach is “outer 
cycles”, meaning a cycle in the graph that does not 
complete a cycle cell. These outer cycles do not constitute 
a win. Therefore, we must define which sets of edges 
(forming cells) would count as winning cycles.

Finally, it is possible to have an edge that is shared by 
multiple cells. This is not necessarily a problem with the 
naïve graph representation, but it is something we need to 
keep in mind when creating our structure.

Representing the Game Board

Our solution to these problems is to create custom Node, Edge, Cell, 
and Board data structures. In this representation, Nodes are given a 
unique id, Edges are made up of a tuple of Nodes, Cells are made up 
of an ordered list of Edges, and a Board is made up of a set of Cells.

Nodes are a simple class that have a unique identifier, a list of 
adjacent nodes, a list of inbound Nodes, and a list of outbound 
Nodes. These Node lists are used to determine when an almost-sink 
or almost-source is present.

Edges are simply a tuple of Nodes where the first Node is the 
source Node and the second Node is the target Node.

The Cell structure is more complex. The main part of the Cell class is 
the ordered list of Edges that make up the Cell. The list must be 
ordered so that we can check if the Cell contains a cycle.

The Board structure is the final piece that brings all of the structures 
together. The important part of the Board structure is the set of Cells 
that make up the board. We also keep an underlying graph structure 
for the sake of creating a human-friendly visual representation of 
the game board.

When a move is made, several actions must be taken. We must 
check if the move is valid by checking if the move would result in a 
sink or source and that the edge selected is not already marked. This 
involves determining which cells and edges are involved with the 
move and performing appropriate checks. When a move is 
determined to be valid, all of our structures are updated starting 
with the Nodes and bubbling all the way up to the Board structure.

Game Board

Cell

Cell Cell

N2 N3

N3 N1

N1 N2

Cell

N3

N5

N2

N5

N2

N3

N4 N5

N5

N2 N4

N2

N6 N5

N5

N3 N6

N3

A playable 
game board 

along with its 
internal 

representation



Creating a Game Tree

After creating the necessary structures to represent our 
game board, we then set out to write a program that 
accepts a game board and generates every possible 
game state for that board. With this, we can then 
analyze the states and determine if player one or player 
two has a winning strategy.

A truncated game 
tree of a simple 

square board…… …

One problem that we face is the inefficiency in generating these boards. We 
plan on making two optimizations that should dramatically increase the size 
of game trees that we can feasibly generate. The first strategy is to take 
advantage of symmetry in the boards. In the example shown, one can see that 
every first possible move on the square board is logically the same move. 
With our current structure, we can not take advantage of this symmetry. 
However, we clearly see the value in using this symmetry down the line, as 
even in this simple example, we would dramatically decrease the number of 
game states that we need to generate.

Motivation

Optimizations
The next optimization that we can make 
involves pruning branches of the game 
tree with the Minimax Algorithm and 
Alpha-Beta pruning. This will allow us to 
prune entire branches that definitely do 
not lead to viable strategies. This, again, 
will significantly cut down the number of 
game states that we need to generate.



Outcomes Future Work
Our work so far has produced a playable implementation 
of the Game of Cycles. This allows us to play and reset 
games easier than drawing them each time, especially 
while playing remotely. We also do not make accidental 
illegal moves while playing anymore since the game will 
catch these mistakes for us.

With our generated Game Trees, we are able to run 
through and evaluate every possible state of a game. 
Optimizing our methods to handle larger boards will be 
our next priority.

Our future work will be focused on generating Game 
Trees more efficiently and deriving greater insights 
from them. We plan to utilize the Minimax Algorithm 
and Alpha-Beta pruning to avoid making unnecessary 
calculations, which would dramatically increase our 
efficiency. After this stage of generating sufficiently 
large game boards that are past the size that we 
already have answers for, we can determine which 
player has a winning strategy. This will make is easier 
for us to proceed with finding what that winning 
strategy is.

AcknowledgementsReferences
Francis Su. Mathematics for Human Flourishing. Yale University Press, 2020.

R. Alvarado, M. Averett, B. Gaines, C. Jackson, M. L. Karker, M. A. Marciniak, F. Su, and 
S. Walker. The Game of Cycles. 2020. arXiv: 2004.00776

“Dash Cytoscape.” Plotly, dash.plotly.com/cytoscape. 

The project was based on work begun at the 2019 Research Experiences for 

Undergraduate Faculty program, which was made possible by the support from the 

National Science Foundation (NSF) through Grants NSF-DMS 1620073 to AIM and NSF-

DMS 1620080 to ICERM

This project was made in collaboration with Dr. Benjamin Gaines who is conducting 

research into winning strategies for the Game of Cycles and contributed toward the 

development of the work discussed here.

We would also like to thank Iona College for the resources provided that helped make 

this project possible. 


